IPS e.max® Ceram

Wissenschaftliche Dokumentation
Inhalt

1. Einleitung .................................................................................................................. 3
   1.1 Übersicht IPS e.max ................................................................. 3
   1.2 IPS e.max Ceram ................................................................. 4
2. Technische Daten ........................................................................................................ 6
3. Werkstoffkundliche Untersuchungen ...................................................................... 8
   3.1 Vergleichsdaten mit anderen Verblendkeramiken von Ivoclar Vivadent AG ........ 8
   3.2 Kompatibilität mit IPS e.max Produkten ........................................... 8
   3.3 Vergleichsdaten von Verblendkeramiken für Zirkoniumoxid ...................... 11
4. In vitro – Untersuchungen ........................................................................................ 13
   4.1 Bruchfestigkeit verblendeter Brücken .............................................. 13
   4.2 Verblendung von Zirkoniumoxid .................................................... 13
5. Externe klinische Studien ......................................................................................... 15
   5.1 Universität Frankfurt a.M .......................................................... 15
   5.2 Universität Boston ........................................................................ 15
   5.3 Universität Connecticut .............................................................. 15
   5.4 Universität Iowa ........................................................................ 16
   5.5 Pacific Dental Institut .................................................................. 16
   5.6 Universität Michigan ................................................................. 16
   5.7 Universität München ................................................................... 17
   5.8 Universität Heidelberg ................................................................. 17
   5.9 Universität Aachen ...................................................................... 17
   5.10 Universität Freiburg ................................................................. 18
   5.11 Zusammenfassung ..................................................................... 18
6. Biokompatibilität ........................................................................................................ 19
   6.1 Einleitung ................................................................................. 19
   6.2 Chemische Beständigkeit ............................................................ 19
   6.3 In vitro-Zytotoxizität ................................................................. 19
   6.4 Sensibilisierung, Irritation ........................................................... 19
   6.5 Radioaktivität ........................................................................ 20
   6.6 Schlussfolgerung ..................................................................... 20
7. Quellenverzeichnis .................................................................................................... 21
1. Einleitung

1.1 Übersicht IPS e.max

IPS e.max ist ein Vollkeramiksystem bestehend aus folgenden fünf Komponenten:

- IPS e.max Press (Pressrohling aus Lithium-Disilikat-Glaskeramik)
- IPS e.max ZirPress (Pressrohling aus Fluor-Apatit-Glaskeramik)
- IPS e.max CAD (Block aus Lithium-Disilikat-Glaskeramik für CAD/CAM-Technik)
- IPS e.max ZirCAD (Block aus Zirkoniumoxid für CAD/CAM-Technik)
- IPS e.max Ceram (fluorapatithaltige Verblendkeramik)
1.2 IPS e.max Ceram

IPS e.max Ceram ist eine Verblendkeramik für vollkeramische Systeme aus SiO₂-LiO₂-Na₂O-K₂O-Al₂O₃-CaO-P₂O₅-F. Durch die optimierte Kombination aus tiefer Brenntemperatur und WAK, eignet sich das Material für die Beschichtung aller IPS e.max Produkte: IPS e.max Press, IPS e.max ZirPress, IPS e.max CAD und IPS e.max ZirCAD.

IPS e.max Ceram ist von der Zusammensetzung, den physikalischen Eigenschaften und der Brenntemperatur her sehr ähnlich wie IPS Eris for E2. Ergebnisse von Studien mit IPS Eris for E2 können daher auch auf IPS e.max Ceram übertragen werden.

1.2.1 Gefüge und Ästhetik

IPS e.max Ceram enthält als Mischungskomponenten Glaskeramiken mit Fluorapatit-kristallen Ca₅(PO₄)₃F. Sie ist frei von Feldspat und Leuzit. Die Fluorapatitkristalle sind in unterschiedlichen Grössen vorhanden (Abb. 1) Durch gesteuerte Keimbildung und Kristallisation können die Fluorapatitkristalle in gewünschter Form hergestellt werden. Die nanoskaligen Fluorapatitkristalle sind weniger als 300nm lang und ungefähr 100nm im Querschnitt (Abb. 2). Zusätzlich sind auch in Längsrichtung gewachsene Fluorapatitkristalle vorhanden, die eine Längenausdehnung von 2-5μm und einen Querschnitt von weniger als 300nm haben (Abb. 1). Je nach Orientierung der Kristalle in der Schliffebene erscheinen die Querschnittsflächen rechteckig oder kreisförmig.

Die nanoskalige Fluorapatitphase bewirkt Opaleszenz (siehe Abb. 3- Abb. 5), was ein wesentlicher Beitrag zur Ästhetik ist. Die Opazität (Trübung) hingegen wird vor allem durch die grösseren Fluorapatitkristalle beeinflusst.

Bedingt durch Lichtstreuungseffekte an den unterschiedlich grossen Fluorapatitkristallen können optische Effekte wie Opaleszenz, Helligkeit, Opazität und Transluzenz bei IPS e.max Ceram gezielt eingestellt werden.

![Abb. 1: Gefüge von IPS e.max Ceram (REM-Aufnahme): unterschiedliche Grössen der Fluorapatitkristalle](image1)

![Abb. 2: Gefüge von IPS e.max Ceram (REM-Aufnahme): Fluorapatitkristalle im Nanobereich](image2)
Abb. 3: Opaleszenz: Unterschiedliche Streuung von langwelligem (rotem) und kurzwelligem (blauem) Licht durch die Nanofluorapatitkristalle

Abb. 4: Opaleszenz: im Auflicht erscheint das Objekt bläulich

Abb. 5: Opaleszenz: im Durchlicht erscheint das Objekt rötlich/orange
2. Technische Daten

IPS e.max Ceram

Verblend Materialien: Dentin, Deep Dentin, Occlusal Dentin, Incisal, Inter Incisal, Margin, Incisal Edge, Transpa Schneide, Spezial Schneide, Transpa, Cervical Transpa, Opal Effect, Mamelon

Korrekturmassen: Dentin, Schneide, Margin

ZirLiner

Standard – Zusammensetzung: (in Gew.-%)

<table>
<thead>
<tr>
<th>Material</th>
<th>Verblend Materialien</th>
<th>Korrekturmassen</th>
<th>ZirLiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>60.0 - 65.0</td>
<td>61.0 - 68.0</td>
<td>50.0 - 60.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.0 - 12.0</td>
<td>5.0 - 8.0</td>
<td>16.0 - 22.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>6.0 - 9.0</td>
<td>5.0 - 8.0</td>
<td>6.0 - 11.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>6.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>4.0 - 8.0</td>
</tr>
<tr>
<td>ZnO</td>
<td>2.0 - 3.0</td>
<td>2.0 - 4.0</td>
<td>---</td>
</tr>
<tr>
<td>CaO, P₂O₅, F</td>
<td>2.0 - 6.0</td>
<td>2.0 - 5.0</td>
<td>2.5 - 7.5</td>
</tr>
<tr>
<td>andere Oxide</td>
<td>2.0 - 8.5</td>
<td>1.5 - 9.0</td>
<td>1.5 - 8.0</td>
</tr>
<tr>
<td>Pigmente</td>
<td>0.1 - 1.5</td>
<td>0.1 - 0.7</td>
<td>0.1 - 3.0</td>
</tr>
</tbody>
</table>

Physikalische Eigenschaften:

In Anlehnung an:

ISO 6872 Dental ceramic
ISO 9693 Metal-ceramic dental restorative systems

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Verblend Materialien</th>
<th>Korrekturmassen</th>
<th>ZirLiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biaxial Biegefestigkeit</td>
<td>MPa</td>
<td>90 ± 10</td>
<td>90 ± 10</td>
</tr>
<tr>
<td>Chemische Löslichkeit</td>
<td>µg/cm²</td>
<td>15 ± 5</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>Ausdehnungskoeffizient</td>
<td>10⁻⁶K⁻¹</td>
<td>9.5 ± 0.25</td>
<td>9.5 ± 0.25</td>
</tr>
<tr>
<td>Transformationstemperatur (Tg)</td>
<td>°C</td>
<td>490 ± 10</td>
<td>470 ± 10</td>
</tr>
</tbody>
</table>
## IPS e.max Ceram

**Shade, Essence, Glasur**

**Standard - Zusammensetzung:**

<table>
<thead>
<tr>
<th></th>
<th>Shade</th>
<th>Essence</th>
<th>Glasur Pulver</th>
<th>Glasur Pasten</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SiO₂</strong></td>
<td>61.0 - 68.0</td>
<td>61.0 - 68.0</td>
<td>61.0 - 68.0</td>
<td>61.0 - 68.0</td>
</tr>
<tr>
<td><strong>Al₂O₃</strong></td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
</tr>
<tr>
<td><strong>Na₂O</strong></td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
</tr>
<tr>
<td><strong>K₂O</strong></td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
<td>5.0 - 8.0</td>
</tr>
<tr>
<td><strong>ZnO</strong></td>
<td>2.0 - 4.0</td>
<td>2.0 - 4.0</td>
<td>2.0 - 4.0</td>
<td>2.0 - 4.0</td>
</tr>
<tr>
<td><strong>andere Oxide</strong></td>
<td>3.5 - 17.0</td>
<td>3.5 - 17.0</td>
<td>3.5 - 17.0</td>
<td>3.5 - 17.0</td>
</tr>
<tr>
<td><strong>Pigmente</strong></td>
<td>10.0 - 20.0</td>
<td>0.4 - 25.0</td>
<td>0.0 - 1.0</td>
<td>0.0 - 1.0</td>
</tr>
<tr>
<td><strong>Glycerin</strong></td>
<td>20.0 - 25.0</td>
<td>---</td>
<td>---</td>
<td>20.0 - 25.0</td>
</tr>
<tr>
<td><strong>Butandiol</strong></td>
<td>15.0 - 20.0</td>
<td>---</td>
<td>---</td>
<td>15.0 - 20.0</td>
</tr>
</tbody>
</table>

**Physikalische Eigenschaften:**

**In Anlehung an:**
- ISO 6872  Dental ceramic
- ISO 9693  Metal-ceramic dental restorative systems

<table>
<thead>
<tr>
<th></th>
<th>Shade</th>
<th>Essence</th>
<th>Glasur</th>
<th>Glasur Pasten</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chemische Löslichkeit</strong></td>
<td>µg/cm²</td>
<td>30 ± 10</td>
<td>30 ± 10</td>
<td>10 ± 5</td>
</tr>
<tr>
<td><strong>Ausdehnungskoeffizient (100 - 400 °C)</strong></td>
<td>10⁻⁶K⁻¹</td>
<td>9.3 ± 0.5</td>
<td>9.3 ± 2.5</td>
<td>9.5 ± 0.25</td>
</tr>
<tr>
<td><strong>Transformationstemperatur (Tg)</strong></td>
<td>°C</td>
<td>475 ± 10</td>
<td>475 ± 10</td>
<td>470 ± 10</td>
</tr>
</tbody>
</table>
3. Werkstoffkundliche Untersuchungen

3.1 Vergleichsdaten mit anderen Verblendkeramiken von Ivoclar Vivadent AG

<table>
<thead>
<tr>
<th>WAK ([10^{-6},\text{K}^{-1}])</th>
<th>IPS e.max Ceram</th>
<th>IPS Eris for E2</th>
<th>IPS Empress2 (Schichtmaterial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-400°C</td>
<td>9.50 (\pm) 0.25</td>
<td>9.75 (\pm) 0.25</td>
<td>9.70 (\pm) 0.50</td>
</tr>
<tr>
<td>Glaspunkt Tg ([,^\circ\text{C}])</td>
<td>490 (\pm) 10</td>
<td>485 (\pm) 10</td>
<td>525 (\pm) 10</td>
</tr>
<tr>
<td>Biaxialfestigkeit ([,\text{MPa}])</td>
<td>90 (\pm) 10</td>
<td>85(\pm)25</td>
<td>100(\pm)25</td>
</tr>
<tr>
<td>Vickershärte ([,\text{MPa}])</td>
<td>5400 (\pm) 200</td>
<td>5600 (\pm) 200</td>
<td>5500 (\pm) 200</td>
</tr>
<tr>
<td>Chem. Beständigkeit ([,\mu\text{g/cm}^2])</td>
<td>15 (\pm) 5</td>
<td>20 (\pm) 10</td>
<td>20 (\pm) 5</td>
</tr>
<tr>
<td>Brenntemperatur ([,,^\circ\text{C}])</td>
<td>750 / 760</td>
<td>755</td>
<td>800</td>
</tr>
<tr>
<td>Werkstofftyp</td>
<td>Fluorapatithaltige Glaskeramik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gehalt an Fluorapatitglaskeramik ([,\text{Gew.-%}])</td>
<td>19 – 23</td>
<td>28 - 48</td>
<td>42 - 56</td>
</tr>
</tbody>
</table>

Tab. 1: Vergleichsdaten mit anderen Verblendkeramiken

3.2 Kompatibilität mit IPS e.max Produkten

3.2.1 Wärmeausdehnungskoeffizient


Die Einheit des WAK ist gemäss ISO 9693 \([10^{-6}\,\text{K}^{-1}]\), oft trifft man aber auch die Schreibweise \([\,\mu\text{m/m}\cdot\text{K}]\) an.

Die Wärmeausdehnung des Schichtmaterials entscheidet über dessen Kompatibilität mit den verschiedenen Gerüstmaterialien.

Keramische Materialien sind sehr empfindlich auf Zugspannungen. Um dies beim Beschichtungsmaterial zu verhindern muss die Schichtkeramik einen kleineren Wärmeausdehnungskoeffizienten (WAK) haben als das festere Gerüstmaterial (Abb. 6).
Abb. 6: WAK der IPS e.max Produkte (Ivoclar Vivadent Schaan, 2005)

- Der WAK von IPS e.max Ceram ist kleiner, als jener der anderen IPS e.max Produkte.

3.2.2 Verbund


Der Verbund von IPS e.max Ceram mit den anderen IPS e.max Produkten ist homogen und fehlerfrei (Abb. 7 bis Abb. 12).
Abb. 9: Homogener Verbund zwischen IPS e.max Ceram (oben), IPS ZirLiner und IPS e.max ZirCAD; (Compo Kontrast; polierte Fläche)

Abb. 10: Homogener Verbund zwischen IPS e.max ZirLiner und IPS e.max ZirCAD; (Compo Kontrast; polierte Fläche)

Abb. 11: Homogenes Sintergefüge und kompakter Verbund zwischen IPS e.max Press (unten) und IPS e.max Ceram; (Compo Kontrast; polierte Fläche)

Abb. 12: Kompakter Verbund zwischen IPS e.max Press und IPS e.max Ceram; (Compo Kontrast; polierte Fläche)
3.3 Vergleichsdaten von Verblendkeramiken für Zirkoniumoxid

3.3.1 Wärmeausdehnungskoeffizienten

Die Wärmeausdehnungskoeffizienten der meisten Verblendmaterialien für Zirkoniumoxid liegen im gleichen Bereich.

3.3.2 Biegefestigkeiten (ISO 6872)

Die Biaxialfestigkeiten sind chargenabhängig.

### 3.3.3 Brenntemperaturen

<table>
<thead>
<tr>
<th>Brenntemperatur [°C]</th>
<th>e.max Ceram</th>
<th>Triceram</th>
<th>Lava</th>
<th>Cercon S</th>
<th>Nobel Zr</th>
<th>Vita VM9</th>
<th>Cerabien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reihe 1</td>
<td>750</td>
<td>755</td>
<td>810</td>
<td>830</td>
<td>910</td>
<td>910</td>
<td>930</td>
</tr>
</tbody>
</table>

Abb. 15: Brenntemperaturen von Verblendmaterialien für Zirkoniumoxid (Ivoclar Vivadent AG Schaan, 2004/05)

IPS e.max Ceram hat die tiefste Brenntemperatur, was bei der Herstellung von Restaurationen den Vorteil kürzerer Prozesszeiten bringt.
4. **In vitro – Untersuchungen**

4.1 **Bruchfestigkeit verblendeter Brücken**

Verblendete Brücken wurden statisch (nach Wasserlagerung) und nach Kausimulation auf ihre Bruchfestigkeit geprüft. Pro Material und pro Prüfung wurden je 8 Proben getestet.

Die statische Prüfung erfolgte auf einer Universalprüfmaschine. Die Kraft wurde direkt auf das Zwischenglied übertragen.


![Graphik](attachment:graph.png)

Abb. 16: Bruchfestigkeit von verblendeten Brücken mit und ohne Kausimulation (Schröder/Spiegel, FH Osnabrück, 2005)¹

- Die statistische Auswertung (Tukey) ergab keinen signifikanten Unterschied der mittleren Bruchkraft zwischen den Serien mit und ohne Kausimulation.
- Die Bruchkraft der mit IPS e.max Ceram verblendeten IPS e.max ZirCAD Brücken ist signifikant höher, als jene der anderen geprüften Brücken.
- Die verblendeten Brücken aus IPS e.max Press bzw. IPS e.max CAD unterscheiden sich statistisch nicht relevant in der Bruchkraft.

4.2 **Verblendung von Zirkoniumoxid**

4.2.1 **Untersuchungen zu Verblendungen auf Zirkoniumoxid**

IPS e.max Ceram ist dem Verblendmaterial IPS Eris for E2 sehr ähnlich (siehe Kapitel 3.1). Daher dürfen für die Beurteilung von IPS e.max Ceram auch Studien mit IPS Eris for E2 herbeigezogen werden.

Sundh et al.²,³ untersuchten die Bruchfestigkeit von Zirkoniumoxid (Y-TZP)-Brücken, die mit verschiedenen Beschichtungsmaterialien, darunter IPS Eris for E2, verblendet sind. Die Ergebnisse sind sehr gut. Genauere Beschreibungen der Methoden und Resultate können in den entsprechenden Veröffentlichungen nachgelesen werden²,³.
4.2.2 Kompatibilität von IPS e.max Ceram mit Zirkoniumoxidgerüsten

Die Inzidenz von Abplatzungen („Chipping“) von Verblendmaterialien ist eine wichtige klinische Größe für die Überlebenswahrscheinlichkeit bzw. die Reparaturbedürftigkeit von prothetischen Versorgungen.

Diese Prüfung *in vitro* dient zur Risikoabschätzung hinsichtlich des Auftretens von Abplatzungen von Verblendkronen auf standardisierten Stümpfen bei exzentrischer Belastung mit einem Stahlantagonisten. Die exzentrische Belastung wurde im Kausimulator Willytec durchgeführt. Dabei vollführte der Antagonist eine translatorische Bewegungsbahn (Hubtiefe = 2,0 mm, Hubhöhe 5 mm, Absenkgeschwindigkeit 40 mm/sec) von der Fossa bis 1 mm vor der Höckerspitze des distobukkalen Höckers unter einer Last von 3 kg, dann 5 kg und 9 kg. Jede Lastphase bestand aus 100.000 Lastzyklen und 300 Zyklen Thermocycling (5°C/55°C).

Intern wurden verschiedene Zirkoniumoxidmaterialien mit IPS e.max Ceram verblendet.

![Diagramm](https://via.placeholder.com/150)

**Abb. 17: Anteil der Kronen (IPS e.max Ceram/ Zirkoniumoxid), die den Kaumaschinentest ohne Abplatzungen durchlauften (Ivoclar Vivadent AG Schaan, 2005)**

- Abplatzungen von IPS e.max Ceram auf verschiedenen Zirkoniumoxidgerüsten traten (wenn überhaupt) sehr selten auf.
5. Externe klinische Studien

5.1 Universität Frankfurt a.M.

Studienleiter: Dr. Weigl, J.W.Goethe-Universität, Frankfurt a.M.

Titel: Klinische Bewährung einer neuen Verblendkeramik für Gerüste aus Zirkoniumoxid

Ziel: Abtestung und klinische Bewährung von IPS e.max Ceram auf verschiedenen Zirkoniumdioxid-Restaurations

Studienaufbau: Eingliederung von 109 Restaurationen bei 59 Patienten:
- 53 im Frontzahnbereich, 56 im Seitenzahnbereich
- 71 Kronen, 38 Brücken (3-, 4- und 5-gliedrige Brücken)
- Pfeiler: 136 Pfeilerzähne und 17 Implantate

Resultate:
Nach durchschnittlich 34 Monaten werden folgende Überlebensraten (nach Kaplan-Meier) berichtet:
- Schichtmaterial: 97.1%
- Gerüstmaterial: 99.1%

5.2 Universität Boston

Studienleiter: Prof. Nathanson; Boston University, Massachusetts

Titel: Klinische Bewährung von IPS e.max Ceram auf IPS e.max CAD-Kronen

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Kronen aus IPS e.max CAD

Studienaufbau: Eingliederung von 40 Kronen aus IPS e.max CAD mit IPS e.max Ceram beschichtet

Resultate:
Klinische Erfahrung bis zu einem Jahr. Es sind keine Ausfälle, wie z.B. Frakturen oder Abplatzungen der Verblendkeramik bekannt.

5.3 Universität Connecticut

Studienleiter: Prof.Kelly, University of Connecticut Health Center, Farmington

Titel: Klinische Bewährung von IPS e.max Ceram auf IPS e.max CAD-Kronen

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Kronen aus IPS e.max CAD

Studienaufbau: Eingliederung von 40 Kronen aus IPS e.max CAD mit IPS e.max Ceram beschichtet
Resultate: Es wird von einer Fraktur berichtet, die aber bereits vor dem definitiven Einsetzen auftrat. Abplatzungen von Verblendkeramik sind keine aufgetreten.

5.4 Universität Iowa

Studienleiter: Prof. Stanford, Dental Clinical Research Center, University of Iowa, Iowa City

Titel: Klinische Bewährung von IPS e.max Ceram auf IPS e.max ZirCAD

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Restaurationen aus IPS e.max ZirCAD

Studienaufbau: Eingliederung von 40 Kronen und 10 Brücken aus IPS e.max ZirCAD mit IPS e.max Ceram beschichtet


5.5 Pacific Dental Institut

Studienleiter: Prof. Sorensen, Pacific Dental Institut, Portland, Oregan

Titel: Klinische Bewährung von IPS e.max Ceram auf IPS e.max ZirCAD

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Brücken aus IPS e.max ZirCAD

Studienaufbau: Eingliederung von 20 Brücken aus IPS e.max ZirCAD mit IPS e.max Ceram beschichtet

Resultate: Innerhalb eines Beobachtungszeitraums von über 6 Monaten wurden weder Gerüstfrakturen noch Abplatzungen der Verblendkeramik beobachtet.

5.6 Universität Michigan

Studienleiter: Prof. Fasbinder, University of Michigan, Ann Arbor

Titel: Klinische Bewährung von IPS e.max Ceram auf IPS e.max ZirPress und IPS e.max ZirCAD

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Restaurationen aus IPS e.max ZirCAD

Studienaufbau: Eingliederung von 30 Kronen und 10 Brücken aus IPS e.max ZirCAD / IPS e.max ZirPress / IPS e.max Ceram

5.7 **Universität München**

Studienleiter: Dr. Beuer (Prof. Gernet) Universitätsklinikum, München

Titel: Klinische Studie zu vollkeramischen Restaurationen aus Zirkonoxid-Keramik verblendet mit einer neuen Verblendkeramik

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Restaurationen aus IPS e.max ZirCAD

Studiennaufbau: Eingliederung von 20 Kronen und 20 Brücken (3- bis 4-gliedrig) aus Zirkoniumoxid (Y-TZP), verblendet mit IPS e.max Ceram

Resultate: Nach einer Beobachtungszeit bis zu einem Jahr wurde eine Abplatzung des Schichtmaterials berichtet.

5.8 **Universität Heidelberg**

Studienleiter: Prof. Rammelsberg, Universitätsklinikum, Heidelberg

Titel: Klinische Studie zu CAD/CAM-gefertigten, vollkeramischen Inlaybrücken auf Zirkonoxidbasis

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Restaurationen aus IPS e.max ZirCAD und IPS e.max ZirPress.


Resultate: Bis zum jetzigen Zeitpunkt sind weder Gerüstfrakturen, noch Abplatzungen von Verblendmaterial bekannt.

5.9 **Universität Aachen**

Studienleiter: Dr. Tinschert, Universitätsklinikum, Aachen

Titel: Klinisch prospektive Studie zur Überlebensrate von überpressten Seitenzahnkronen aus Zirkonoxid

Ziel: Die klinische Bewährung von IPS e.max Ceram auf Restaurationen aus IPS e.max ZirCAD und IPS e.max ZirPress.

Studiennaufbau: Eingliederung von 30 Seitenzahnkronen mit Zirkoniumoxidkappen aus DC-Zirkon, Lava und IPS e.max ZirCAD. Die Kappen werden mit IPS e.max ZirPress überpresst und mit IPS e.max Ceram verblendet.

Resultate: Bis zum heutigen Zeitpunkt werden keine Gerüstfrakturen oder Abplatzungen des Verblendmaterials berichtet.
5.10 Universität Freiburg

Studienleiter: Prof. Strub, Albert-Ludwigs-Universität, Freiburg

Titel: Klinisch-prospektive Untersuchung von Seitenzahnbrücken aus einer experimentellen Lithium-Disilikat-Keramik über 5 Jahre

Ziel: Die klinische Bewährung von mit IPS e.max Ceram verblendeten Restaurationen aus Lithiumdisilikat.

Studienaufbau: Eingliederung von 40 dreigliedrigen Seitenzahnbrücken aus IPS e.max CAD verblendet mit IPS e.max Ceram.


5.11 Zusammenfassung

IPS e.max Ceram wurde auf Lithiumdisilikat (IPS e.max Press und CAD), auf Zirkoniumoxid (IPS e.max ZirCAD) und IPS e.max ZirPress sowohl in vitro, wie auch klinisch getestet. Bislang hat sich das gewählte Verblendkonzept sehr erfolgreich bestätigt. Auch die Möglichkeiten für die Gestaltung eines ästhetischen Zahnersatzes wurden ausdrücklich positiv bewertet.

Für eine sichere Anwendung und zur Gewährleistung eines langfristigen klinischen Erfolgs müssen die in der Verarbeitungsanleitung genannten Parameter eingehalten werden.
6. **Biokompatibilität**

6.1 **Einleitung**

Vollkeramik-Materialien besitzen anerkannterweise eine gute Biokompatibilität\(^5\,\,^6\).

Die Hauptkomponenten von IPS e.max Ceram (SiO\(_2\), K\(_2\)O, ZnO, ZrO\(_2\), Li\(_2\)O, CaO, Na\(_2\)O, Al\(_2\)O\(_3\)) entsprechen IPS Eris for E2 and IPS Empress2 Schichtmaterial, welche bereits seit Jahren erfolgreich auf dem Markt sind. Daher kann die Biokompatibilität der erwähnten Schichtmaterialien auch auf IPS e.max Ceram übertragen werden.

6.2 **Chemische Beständigkeit**


Gemäß Anusavice\(^7\) gelten Keramiken als die beständigsten Dentalmaterialien.

Intern wurde die chemische Beständigkeit nach ISO 6872, sowie zusätzlich in künstlichem Speichel gemessen:

<table>
<thead>
<tr>
<th>Test</th>
<th>Chem. Löslichkeit [µg/cm(^2)]</th>
<th>Grenzwert nach Norm [µg/cm(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Norm ISO 6872</td>
<td>10 - 20</td>
<td>&lt; 100</td>
</tr>
<tr>
<td>In künstlichem Speichel</td>
<td>15 – 24</td>
<td>--</td>
</tr>
</tbody>
</table>

(Ivoclar Vivadent AG, Schaan, 2005)

- Die chemische Löslichkeit von IPS e.max Ceram liegt weit unter dem in der Norm festgelegten Grenzwert.

6.3 **In vitro-Zytotoxizität**

IPS e.max Ceram besteht aus Materialkomponenten die auch in den Beschichtungsmaterialien IPS Empress2 und IPS Eris for E2 vorhanden sind. Aufgrund der ähnlichen Materialzusammensetzung kann gefolgert werden, dass IPS e.max Ceram kein toxisches Potential aufweist.

Die in vitro-Toxizität von IPS Empress2 und IPS Eris for E2 wurde überprüft:


Unter den gewählten Versuchsbedingungen wurde kein zytotoxisches Potential festgestellt\(^8\).

6.4 **Sensibilisierung, Irritation**

Da eine direkte Irritation der Schleimhautzellen durch die Keramik praktisch ausgeschlossen werden kann, ist eine allfällige Irritation im Allgemeinen auf eine mechanische Reizung zurückzuführen. Diese kann durch Befolgen der Anleitungshinweise für IPS e.max Ceram im Normalfall vermieden werden.

**Keramik besitzt kein – oder im Vergleich zu anderen Dentalmaterialien ein geringeres – irritierendes oder sensibilisierendes Potential.**

### 6.5 Radioaktivität

Die Radioaktivität von IPS Eris for E2 und IPS Empress2 wurde am Forschungszentrum Jülich gemessen. Der gemessene Wert liegt mit $<0.03 \text{ Bq/g}^{14}$ bzw. $0.006 \text{ Bq/g}^{15}$ deutlich tiefer als der gemäss ISO 6872 festgelegte Maximalwert von 1.0 Bq/g.

### 6.6 Schlussfolgerung

Aufgrund der vorhandenen Daten und dem heutigen Wissensstand kann festgehalten werden, dass IPS e.max Ceram kein toxisches Potential aufweist. Bei Anwendung gemäss Herstellervorschriften besteht weder für Patienten, Zahntechniker noch Zahnärzte eine Gefährdung der Gesundheit.
7. Quellenverzeichnis


8. NIOm Test Report (2003); No 004/04


Die Informationen werden kostenlos zur Verfügung gestellt und weder wir, noch eine mit uns verbundene Partei, können für etwaige direkte, indirekte, mittelbare oder spezifische Schäden (inklusive aber nicht ausschliesslich Schäden auf Grund von abhanden gekommener Information, Nutzungsaußfall oder Kosten, welche aus dem Beschaffen von vergleichbare Informationen entstehen) noch für poenale Schadenersätze haftbar gemacht werden, welche auf Grund des Gebrauchs oder Nichtgebrauchs der Informationen entstehen, selbst wenn wir oder unsere Vertreter über die Möglichkeit solcher Schäden informiert sind.

Ivoclar Vivadent AG
Forschung und Entwicklung
Wissenschaftlicher Dienst
Bendererstrasse 2
FL – 9494 Schaan
Liechtenstein

Inhalt: Petra Bühler-Zemp / Dr. Thomas Völkel
Ausgabe: September 2005